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Abstract. We extend numerical investigations of the mechanics of a simple lattice model 
of DNA. The model consists of two linear mass chains connected by a Morse potential 
representing the hydrogen handing between the sugar-phosphate backbones. Effects of 
variations in the Mone potential parameters on propagating breather type solutions are 
studied. 

1. Introduction 

In two earlier papers the dynamics of a system consisting of two coupled chains of 
masses representing a simple model of DNA were investigated [ l ,  21. In this model the 
coupling along the chain is linear whereas the interchain coupling is determined by 
the nonlinear Morse potential. The motivation for including nonlinear forces in studying 
such a system is the observation that biological organisms overcome normal dissipative 
processes in order to grow and reproduce. One of the interesting phenomena seen in 
nonlinear dynamical systems is the self-focusing of energy with the existence of 
long-lived dynamic coherent structures. It is this property that has led to various 
attempts to apply nonlinear dynamics to biological systems, particularly DNA [3-91. 
A phenomena of particular interest is the ‘breathing’ of DNA molecules whereby a 
strand of the DNA double chain opens into two separate chains for short stretches 
along the chain. This phenomena is well known experimentally and occurs spon- 
taneously at (apparently) random sites along the molecule for brief periods [lo]. The 
connection (if any) with the opening of DNA which occurs during the replication 
process is not well understood. 

In section 2 of this paper the details of the model are reviewed. ‘Breather’ solutions 
for a semi-discrete limit for this model using the technique outlined by Remoissenet 
[ 111 are considered in section 3 and are used as initial conditions in the present study. 
The effects of a varying substrate potential for a single chain with nonlinear coupling 
which supports kink type solutions has been examined by Peyrard and Remoissenet 
[12,13]. The effects of variations of the strength of the Morse potential on the initial 
condition breather solutions on a double chain are examined in section 4 of the present 
paper. The final section summarizes the results of the previous sections and notes 
possible implications for biological systems. 

2. The model 

The model under investigation consists of two chains of masses connected by linear 
springs along their length with the addition of nonlinear coupling between masses of 
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each chain. The Hamiltonian for the system is 
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H =I: 1/2m(uf+ w a ) +  1/2k[(u. - U.- , )~+(W.  - w . _ ~ ) ~ ] +  V(u. - U,) (1) " 
where U is the top chain displacement from equilibrium and w is the bottom chain 
displacement [l]. The corresponding velocities are U' and w'. Here k represents the 
linear coupling strength along the top and bottom chains. The Morse potential was 
chosen to represent the (multiple) interchain hydrogen bonding for the model DNA: 

V(u.-w.)=D{exp[-a(u, - ~ , , ) ] - l } ~ .  (2) 
By changing variables to x, =(U. + w . ) / f i  and yn =(U. - w,,)/v!? the Hamiltonian 
separates into in-phase and out-of-phase components where only the out-of-phase 
motion stretches the hydrogen bond. In-phase motion was not investigated in the 
present work. The equation for out-of-phase motion is 
m.A, / A ! ~ - G ( , ,  +,, -7 . ,  j-7.hnnev,,-.hn., \rpun(-.hn7, ) - i i = 0 .  (3) 

All figures shown were generated by time stepping through the integration of the 
full equations of motion for the connected chains using a fifth-order Runge-Kutta 
method [14]. For the symmetric initial conditions studied here this is equivalent to 
solving the in-phase equation of motion, equation (3). Energies were calculated directly 
from the model and were conserved in all cases to better than 0.001%. The masses are 
constrained to move only in the vertical direction and the ends of the chains were left 
free in order to more accurately reflect biological conditions. The effect of also including 
longitudinal motion has been examined by Muto et a1 [IS]. 

... ","," ..,, .,n-, -"- - - - ' .y ,  "-..,,,,L-,.y, .-..,,,, -1 

3. Solutions 

The Hamiltonian (1) above leads, in leading nonlinear order and using a multiple-scale 
expansion method, to a nonlinear Schrodinger equation with discrete breather solitary 
waves of the form 

y . ( t ) =  ~ A s e c h ~  cos(Knl-Rf) -2as2A2sech2X 
+ (ae2/3) sech2,y cos[2(Knl -nf)]/[3+ (16klw;) sin4(~J)] (4) 

as shown by Remoissenet [ll]. The motivation for the term breather is readily apparent 
in figure 1. 

Here 

K = K + & ( u . / ~ ~ )  ( 5 d )  

P = (kf2/2mo)[COS(Kf) - ( k / m o 2 )  sin'(~f)] (se) 

(5f) Q = (0i/20){4a2-2a2/[3 + (16k/moi) sin4(d/2)] - 3 p )  
02=  o;+4(k/m) sin2(~1/2) 

o i = 4 D a 2 / m  

a = - 6 f i a / &  

p = 1 a ~ / 3 ~ ~ .  
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Figure 1. Time sequence of an unperturbed breather at time intervals of 0.4 time units. 
The initial separation distance is arbitrary and set at 0.25 units. Overlap of top and bottom 
chain is only apparent. Here D = I ,  K = 0.9, o = 1.1  and k = 1 .  The base pair number is on 
the horizontal anis and relative displacement on the venical axis here and in subsequent 
figures. 

Here V, = (kl/mw) s in (~ l /2 )  is the group velocity, Le = ~ P / ( u : - ~ u , u , ) ~ ’ * ,  is the 
breather width, l is the lattice spacing, K is the linear carrier wave vector, U. is the 
envelope velocity, U, is the carrier wave velocity and E is an arbitrary scaling parameter 
which controls the (coupled) amplitude and width of the breather. The parameters (I, 
D and k determine the strength of the coupling. 

These breather solutions were used as initial conditions in numerical simulation 
experiments and found to be reasonably stable for a wide range of coupling parameters. 
Values of D which were investigated in the present work ranged from D=O.1 to 
D = 3.5. Values of other parameters were chosen to provide the most stable pulse shape 
over time when undisturbed, typically a = 1.1, E = 0.01, k = 1 and K =0.9. This choice 
of parameters also avoids the problem of breathers which are so narrow as to be 
affected by discrete lattice pinning effects which were not examined. 
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4. Numerical results 

The precise effects on the strength of the hydrogen bonds caused by variations in the 
base pair pattern along a DNA chain have not been investigated. It is also not clear 
what effect, if any, differences in environment, such as molecule bending or the 
attachment of large proteins to the chain, have on the hydrogen bonding strength. It 
does seem logical that variations in bond strength of some type appear along the chain 
giving a preference for locations of the breathing behaviour. For this reason several 
types of changes in bond strength along the chain were investigated in the present 
model. It was quickly determined that the long-term stability of the initial breather 
modes was very sensitive to changes in the Morse potential parameter a. A value of 
1.1 was chosen for the parameter a in all trials so that stability of an undisturbed 
breather could be assured. 

In the first set of experiments a breather was launched in a region of constant D 
towards a region where D changed steadily to a new constant final value. Typically 
the breather was started centred at molecule 25 (or 75) and travelled into a region of 
increasing (decreasing) D located between molecules 40 and 60 on the chain. If the 
increase in D is small enough, for example D = 1 to D =  1.1, the breather is able to 
go down the incline with small adjustments in shape (figure 2). A breather travelling 
up the incline shows reflection of some energy and the transmission of a pulse shape 
(figure 3). For moderate increases in D, for example D=O.8 to  D =  1, a greater 
difference appears between going up  and coming down the potential gradient. Breathers 
can travel down the incline with changes in shape (while still coherent) but reflect off 
of the incline when launched towards increasing D (figure 4). The reflected breather 
has the identical shape of the launched breather but travels in the opposite direction. 
When the change in D is quite large ( D  = 0.6 to D = 1.2) the breather reflects when 
approaching from both the low side and the high side of the D gradient region. When 
approaching from the high side there is some radiation which continues in the decreas- 
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Flgure 2. Time sequence of a breather (moving in the direction of Ihe arrow) at ( a )  1=0 
and(b) r=144.4timeunits.D=1 formaleculenumbers<40,D= 1.1formole~lenumbe~ 
>60 and D gradually increases from 1 to 1.1 between molecules 40 and 60. Here I =0.9, 
n = l . l  and k = l .  
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Figure 3. Time sequence of a breather (moving in the direction of the arrow) at (a) I = O  
and(b) l  =240.8timeunits.D= 1 formoleculenumbers<40, D=I.Iformoleculenumben 
>60 and D gradually increases from 1 to 1.1 between molecules 40 and 60. Here I( =0.9, 
a = 1.1 and k =  I .  

DI 

c 

-1.0 

Figure 4. Time sequence of a breather (moving in the direction of the arrow) at ( a )  i = O  
and ( b )  t = 241.2 time units. D = 0.8 for molecule numben <40, D = 1 for molecule numben 
>60 and D gradually increases from 0.8 to I between molecules 40 and 60. Here x =0.9, 
a = 1.1 and k =  I .  

1 0  zo 30 40 M BO m no 90 IW 

ing D direction but a breather shape very similar to the launched shape is reflected 
(figure 5). A possible explanation based on energy arguments will be given below. 

In the above trials the change in D was effected over a space of 20 molecules along 
the chain. The same change in D was made over shorter and longer distances to look 
for possible interacting length scales between the breather size and the incline size. 
For breathers travelling over a decrease in D there appears to be little difference 
between less steep (D=O.8 to D =  1 over 40 molecules) and more steep (D=0.8 to 
D = 1 over 5 molecules) changes. For breathers travelling towards an increase in 0, 
the speed at which the breather reflects is affected by the steepness. A steeper change 
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Figure S. Time sequence of a breather (moving in the direction of the arrow) at (a) i = 0 
and ( b )  I = 140.8 time units. D=O.6 far molecule numbers <40, D =  1.2 for molecule 
numben >60 and D gradually increases from 0.6 to 1.2 between molecules 40 and 60. 
H e r e r = 0 . 9 . a = l . l a n d  k = l .  

in D causes a more rapid reflection, a less steep change causes a slower turnaround. 
The reflected breather is the same in both cases, however. 

A second set of trials involved launching a breather mode on a chain with a 
sinusoidally varying D. Low amplitude, low frequency changes in D ( D  = 1 f 
0.04sin(O.O3n) where n is the molecule number) had negligible effect on breather 
motion. Low amplitude, high frequency changes in D ( D =  l*O.O4 sin(0.16n) where 
n is the molecule number) had slight effects on breather motion, causing some radiation 
(figure 6). The phase (the + or - sign in front of the sine) of the variation in D had 
no effect in these trials. 

-1.0 
10 20 30 U1 50 50 70 80 Bo I W  

Figure 6. Time sequence of a breather (moving in the direction of the arrow) at ( a )  I = 0 
and ( b )  I = 143.6 time units. D = 1 + 0.04 sin(0.16") where n is the molecule number. Here 
I =0.9, o = l . l  and k =  1. 
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Large amplitude, high frequency changes in D ( D  = 1 +0.6 sin(0.16n) where n is 
the molecule number) trapped breathers and modified their shape somewhat (figure 
7). Phase was not a factor for these cases. Phase did have an effect for large amplitude, 
low frequency changes. If the breather was launched centred near a maximum in D 
(D= 1+0.6sin(O.O3n) and breather centred at 25) it remained trapped with shape 
changes. If the breather was launched centred near a minimum in D ( D = l -  
0.6 sin(0.03n) and breather centred at 25) it propagated with shape changes and some 
radiation (figure 8). 

In a subsequent set of experiments, breathers were launched so as to interact with 
a region where D changed gradually from a value of 1 to another value (either larger 
or smaller) and then back to 1. Two shapes were investigated in this set of trials; a 

+ 0.5 

0 5 -  

00 - 

- 0 5 -  

10 M ?U 40 50 BO 70 80 90 1W 

1 0 7  bl 

I 

-1.0 
10 20 30 40 50 60 70 80 90 t W  

Figure 7. Time sequence of a breather (moving in the direction of the arrow) at ( a )  t = O  
and ( b )  I= 144.4 time units. D =  1+0.6sin(O.l6n) where is the molecule number. Here 
I( =0.9, 0 = 1.1 and k =  1. 

" O l  - 
- 0.5 

-1.0 
10 20 30 40 Y) 60 70 80 90 100 

1.0 1 bl 

.0,5d -1.0 10 20 30 40 50 BO 70 Bo 80 100 

Figure 8. Time sequence of a breather (moving in the direction of the arrow) at (a) t = O  
and ( b )  1 = 142.8 time units. D = 1-0.6 sin(0.03n) where n is the molecule number. Here 
u = 0 . 9 . o = l . l a n d k = l .  
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sawtooth shape consisting of a linear increase (or decrease) followed by a linear 
decrease (or increase) and a hyperbolic secant shape of varying widths and heights. 
The effect of sawtooth shaped changes in D were identical to effects of hyperbolic 
secant shaped changes of comparable size and magnitude. For cases where the breather 
was launched towards a region where D was increased, for example D =  
1 +0.1 sech[(n -50)/8] with n as the molecule number, there was always some reflec- 
tion. For small positive changes in D there was also coherent transmission of energy 
but the transmitted pulse was more spread out than the original breather. When the 
change in D was positive and large, there was almost total reflection, except for very 
narrow variations in D (for example D = 1 + 0.4 sech[( n - 50)/0.5]) (figure 9). In these 
cases the breather appeared to be split into two breathers of lesser amplitude. 
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+ 
0.5 

-1.n 
10 20 30 40 B BO 70 80 DO 100 

! O  20 30 do B I O  m 10 80 !OO 

Figure 9. Time sequence of a breather (moving in the direction of the arrow) at ( a )  1 = O  
and ( b )  1 = 140.8 time units. D = 1 +0.4 sech{(n - SO)/O.S) where n is the molecule number. 
H e r e ~ = 0 . 9 , ( 1 = l . I a n d r = l .  

In cases where the change in D was a decrease (and subsequent increase hack to 
the original value) the breather passed through the deformity with only minor loss of 
energy, regardless of the width or depth (with D always greater than zero) of the 
modified region. 

Breathers were also launched in the deformity region, rather than outside the region 
travelling towards it. For all cases where the modified D was lower than surrounding 
regions, the breather was trapped with some shape change, regardless ofthe magnitude 
or size of the modification in D (figure 10). In the case of breathers launched in regions 
of positive change in D (for example D = 1 +0.6 sech[(n -50)/4]) two different results 
were seen depending on the magnitude of the change in D. Small changes in D ( D  = 1 
up to 1.6) caused a breather launched on the impurity region to split with radiation 
travelling off in two different directions (figure 11). If the variation in D was large, 
however, a rather unexpected effect was seen. For breathers launched at the centre of 
a region of D = 1 + 2  sech[( n -50)/8], the breather remained trapped in this region. 
Although the shape of the breather was not conserved, the energy did not leave the 
region of the deformity even over very long time periods (figure 12). 

A final group of trials involved the interaction of two breathers, one of which was 
initially trapped in a region of lower D. It was found that moving breathers pass 
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5. Conclusion 

A possible expianation oi  trapping in regions of iarger vaiues of ij comes from energy 
considerations. Scharf and Bishop have examined a single chain lattice described by 
a particular discrete nonlinear Schrodinger equation with an added on-site potential 
[16, see also 171. They show that breather solutions for that system can be treated with 



6096 K Forinash and I Keeney 

0.54 

., n 
I O  20 30 40 50 60 70 80 80 1W 

Figure 12. Time sequence of a breather (moving in the direction of the arrow) at ( a )  I = 0 
and ( 6 )  f=Z94.0 time units. D =  l+Zsech{(n-50)/8) where n is the molecule number. 
H e r e ~ = 0 . 9 , o = l . l a n d k = l .  

10 20 30 40 50 50 70 BO 80 1W 

1.0- bl 

0.5‘ 

0.0- 

-0.5- 

-1.0 
10 20 so 40 50 80 70 . 80 90 i w  

Figure 13. Time sequence of two breathen (one starting centred at molecule 25 moving 
in the direction of the arrow, the other trapped, centred at molecule 50) at ( a )  I = O  and 
( 6 )  I = 191.6 time units. D = 1-0.4 sech{(n -50)/4) where n is the molecule number. Here 
~ = 0 . 9 , o = l . l a n d  k = l .  

a collective coordinate approach in which the breather is described as a particle 
interacting with an effective potential. Analyses given in that paper show that because 
of the way the effective potential depends on the added on-site potential, positive 
on-site potentials can trap breathers the same way negative on-site potentials can. The 
present problem is different in that rather than having an added on-site potential which 
varies, the parameters in the Schrodinger equation itself are changing. The analysis in 
terms of collective coordinates does not appear to be possible for the present case but 
it seems reasonable to expect similar effects. 

Energy surfaces and constant energy contours are shown in figure 14 for variable 
D plotted against the adjustable parameters K and E. The adjustable parameter E 
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Figure 14. Plot of energy as a function of the parameters D, E and K. D versus e (labelled 
ep in the figure) is shown in 14(a) and 14(b). The variation of D Venus K (labelled k,, in 
the figure) is shown in 14(c) and l4(d). 
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determines the maximum amplitude and also the width of the initial breather. The 
carrier wave vector, K, controls the internal shape of the breather, and consequently 
the speed since the initial velocities were determined from derivatives of the initial 
positions of the masses. Larger values of K give higher speeds. Some values of K give 
rise to other types of nonlinear pulses such as 'dark' solitons, asymmetric envelopes, 
etc, with imaginary amplitudes. The present model has real amplitudes which thus 
restricts the values of K to the range O> K > 1. It is clear from the energy contour 
diagram in figure 14 that, for the range of parameters examined here, increasing D 
while trying to  conserve energy would necessitate changing K to restricted values. This 
accounts for the reluctance of a breather to move into regions of larger D. When 
moving into regions of lower D, if the change is not too abrupt, there is the possibility 
of having enough energy to create new breathers. One interpretation ofthe extra humps 
in figure 2 ( b )  is that a second breather is calving off of the first because of the extra 
energy available. 

The present double chain model is far too simple to account for many of i he  
complicated effects seen in real DNA. Longitudinal motion along the chain, coiling 
resulting in possible diagonal bonding and other secondary structural effects have not 
been included here. However it is interesting to note from the present results that 
self-localized coherent breathing states are affected by small changes in potential 
parameters. Thus a mechanism exists whereby small inhomogeneities along the chains 
representing genetic coding can affect the dynamics of opening and closing of the 
double chain system. The present model is thus a step towards understanding some 
of the nonlinear dynamics which may he occurring along a DNA molecule during or 
preceding the processes of chain opening and closing. 
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